Environmental Risk of Acetate-Based Lepidopteran Pheromones

LBAM Environmental Advisory Task Force February 21, 2008 Monterey, California

Evaluation Procedure for Ecological Risk Assessment

- Assumes risk is a function of toxicity and exposure
- Risk Quotient (RQ) =
 Exposure / Toxicity
 Endpoint
- RQ compared to levels of concern (LOC's)

Which Chemical Poses the Greatest Risk?

• Chemical A:

- Fish
$$LC_{50} = 4 ppb$$

- Exposure = 0.5 ppb
- Risk = 0.5/4 = 0.12

• Chemical B

$$-$$
 Fish LC₅₀ = 4 ppm

$$-$$
 Exposure = 5 ppm

$$-$$
 Risk = $5/4 = 1.25$

Surfactant Use and Checkmate

- Reported bird die-offs attributed to a proteinbased material with "surfactant-like" properties
- No surfactants in the formulated material
- No surfactants used in mixing for application per label instructions
- CA Fish and Game report concluded no link to LBAM applications

Pheromone Terrestrial Vertebrate Toxicity

Test Species	Exposure Route	Toxicity Value
Bobwhite/Mallard	Oral	$LD_{50} > 2 - 10 \text{ g/kg}$
Rat	Oral	$LD_{50} > 5 - 34 \text{ g/kg}$
Rat	Dermal	$LD_{50} > 2 - 25 \text{ g/kg}$
Rat	Inhalation	LC ₅₀ 3 - 33.2 mg/L
		LC_{50} 3 - 33.2 g/m ³

Terrestrial Exposure to Pheromones

- Determine residues based on direct application to food items
 - Herbivores, granivores, insectivores
 - Different size classes for each taxa
 - Assume broadcast liquid applications of pheromone
 - No degradation or volatilization
- Mammals: 0.02 to 10.07 mg/kg
- Birds: 0.19 to 12.03 mg/kg

Pheromone Risk to Terrestrial Organisms

- Levels of Concern (LOC)
 - Risk Quotient (RQ) = Exposure / Toxicity
 - LOC Endangered mammals and birds (0.1)
 - RQ for birds: 12.03 mg/kg / > 2 g/kg
 - RQ = < 0.006
 - RQ for mammals: 10.07 mg/kg / > 5 g/kg
 - RQ = < 0.002

Inhalation Exposure Assumptions

- All of the pheromone from the application is available for inhalation
- All pheromone is available within 2-m from the ground (ie. Application height = 2 m)
- Mammalian and avian inhalation toxicity is similar
- Maximum Exposure 1.85 mg/m³

Pheromone Inhalation Risk to Select Terrestrial Non-Target Organisms

Species	Inhalation Rate (m³/day)	Maximum Inhalation Dose (mg/day)	Inhalation Toxicity Value (mg/m³)	Risk Quotient
Deer Mouse	0.025	0.05	3000	0.00002
Cottontail	0.63	1.17	3000	0.0004
Red Fox	2.0	3.7	3000	0.002
Belted Kingfisher	0.094	0.17	3000	0.0006
Western Gull	0.48	0.89	3000	0.0003
Bald Eagle	1.43	2.64	3000	0.0009

Maximum Inhalation Dose = Inhalation rate $(m^3/day) * 1.85 mg/m^3$

Pheromone Aquatic Toxicity

Test Species	Toxicity Value
Rainbow Trout	$LC_{50} > 100 - 270 \text{ mg/L}$
Bluegill Sunfish	$LC_{50} > 100 - 540 \text{ mg/L}$
Daphnia magna	$EC_{50} = 1.30 - 6.80 \text{ mg/L}$

^{*} Values exceed solubility.

LBAM Pheromone Aquatic Toxicity

- Formulated Pheromone: Dosing based on direct application data
 - Mytilus galloprovincialis: No effects based on average and maximum number of microcapsules observed in first application w/n spray block
 - September 07: Average = 36 microcaps/sq ft; maximum 265
 - Ceriodaphnia dubia: No effects based on average and maximum number of microcapsules observed in second application
 - Fathead minnow: No effects based on average and maximum number of microcapsules observed in second application
 - October 07: Average = 114 microcaps/sq ft; maximum 809

• Technical Pheromone:

- Ceriodaphnia dubia: no effects at 12 and 24 ppb; 100% mortality at 100 to 400 ppm
- Fathead minnow: no effects at 12, 24 and 48 ppm
 - Santa Cruz application: 52,000 acres
 - Entire amount of pheromone from the Santa Cruz application into a two acre pond is approximately 53 ppm

Pheromone Exposure to Aquatic Organisms

- Direct application at the maximum rate into a closed body of water 12 inches deep
- Body of water has no inlet/outlet
- All of the material is soluble
- None of the material degrades
- Material applied as technical material
- Estimated Aquatic Residue = 0.012 mg/L

Technical Phermone Risk to Aquatic Receptors

- Levels of Concern (LOC)
 - Risk Quotient (RQ) = Exposure / Toxicity
 - LOC Endangered aquatic organisms (0.05)
 - RQ for fish: 0.01 mg/L / > 100 mg/L
 - RQ = < 0.0001
 - RQ for invertebrates: 0.01 mg/L / 1.30 mg/L
 - RQ = 0.009

Summary

- Based on unrealistic exposure scenarios and available toxicity data the pheromone poses negligible oral and inhalation risk to non-target birds and mammals
- Based on unrealistic exposure scenarios and available toxicity data the technical and formulated pheromone poses negligible risk to fish and aquatic invertebrates